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Kinematic vortex-antivortex lines in strongly driven superconducting stripes
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In the framework of the time-dependent Ginzburg-Landau formalism, we study the “resistive” state of a
submicron superconducting stripe in the presence of a longitudinal current. Sufficiently strong current leads to
phase slippage between the leads, which is manifested as oppositely charged kinematic vortices moving in
opposite directions perpendicular to applied drive. Depending on the distribution of superconducting current
density the vortex-antivortex either nucleate in the middle of the stripe and are expelled laterally or enter on
opposite sides of the sample and are driven together to annihilation. We distinguish between the two scenarios
as a function of relevant parameters and show how the creation/annihilation point of the vortex-antivortex and

their individual velocity can be manipulated by applied magnetic field and current.
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I. INTRODUCTION AND MODEL

Phase-slip phenomenon is already a long-known mecha-
nism that allows superconductivity to survive in the presence
of an electric field. According to this scenario, in a narrow
superconducting wire with applied longitudinal current the
phase of the order parameter may periodically drop by 2,
virtually in a single point. In such points, called the phase-
slip centers (PSC) the magnitude of the order parameter os-
cillates between zero and its maximum value. Analogously,
the PSC may “grow” in a phase-slip line (PSL) in two-
dimensional (2D) samples, even with width W much larger
than the characteristic length scales” (see also Ref. 3 for re-
view). Contrary to PSC, the oscillations of the order param-
eter may not necessarily be uniform along the PSL: these
oscillations may occur in the form of propagating waves car-
rying the order parameter singularities across the sample.
Such waves (named kinematic vortices) have been first ob-
served in numerical simulations using the 2D time-dependent
Ginzburg-Landau (TDGL) equations,* and the experimental
evidence for the existence of kinematic vortices was reported
in Ref. 5.

However, topologically speaking, the condition of the
phase-slippage over a PS line can be satisfied not just for a
single kinematic vortex but also for rwo singularities propa-
gating in opposite directions, i.e., a kinematic vortex-
antivortex (V-Av) pair. Note that in the latter scenario the
needed time for the PS process cuts to a half, compared to
the kinematic vortex case. The main objective of the present
paper is to discuss the conditions for either single- or two-
species kinematic PSL as a function of the different param-
eters characterizing the superconducting sample. As an ex-
ample, we consider a superconducting stripe driven into a
nonequilibrium state by large electrical current where strong
spatial variation of the condensate occurs and study the ef-
fect of size and position of the current leads, temperature,
and applied (weak) magnetic field on the dynamics within
the phase-slip line. Further we discuss the repercussions on
the electronic properties of the stripe, e.g., the current-
voltage (I-V) characteristics and output voltage vs time sig-
nal for a given current input.
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Electric-field induced flux-flow instabilities have been
studied in the past using TDGL theory.>*%~14 Although phe-
nomenological in origin, this theory showed good agreement
with the experiment both for one-dimensional (1D) (Refs. 9
and 10) and 2D (Refs. 11 and 12) superconductors. In the
present paper, we consider a very thin (thickness d<<&,\)
superconducting strip (length L, width W) generally in the
presence of a perpendicular magnetic field and with a trans-
port electric current applied through normal-metal leads (of
size a, see Fig. 1). To explore the dynamic properties of the
superconducting condensate in this system we used the
TDGL equation in its generalized form!'>-16

u (a , Wlwlz)
V1 + Y|y c7t+l¢+2 ot v
= (V=iA)y+ (1= [y (1)

This equation is coupled with the equation for the electro-
static potential Ae=div{I[V*(V-iA)W¥]}. In above equa-
tions, distances are expressed in units of coherence length,
time is scaled by so-called GL time 7g; =wh/8kzTu, the
electrostatic potential ¢ by ¢y=h/2e7g;, and vector potential
A by H,¢. Generalization of the usual TDGL theory comes
from the parameter y=27;¥,/%, which characterizes the
chosen material (with 7 being the inelastic electron-collision
time) and the term coupled to y related to the relaxation (and

I y

L d

FIG. 1. (Color online) Schematic view of the sample—a super-
conducting sample (width W, length L, and thickness d) with at-
tached normal leads (size a).
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viscosity) of the condensate. In the present simulations, the
coherence length and the penetration depth at zero tempera-
ture are taken as §=10 nm and A=200 nm, which are typi-
cal values for thin Nb films.!” Using the normal-state resis-
tivity p=18.7 uQ cm for such films we obtain 7g
~6.72 ps. Microscopically determined parameter u=5.79 is
a suitable value for most low-T . materials'> and we assumed
v=20 for the considered sample. Superconductor-vacuum
boundary conditions (V-iA)|,=0, Vel|,=0 are taken at all
boundaries of the sample, except at the interface with current
contacts where normal-metal-superconductor boundary con-
ditions =0 and V¢|,=—; are used.

Since we work very close to T, heating effects are not
taken into account in our simulations. In this range of tem-
perature the effect of heat dissipation becomes small.'® At
low temperatures one should combine the GL equations with
the heat diffusion equation'® to take into account the heat
dissipation. However, recent numerical simulations'®!?
showed that heating effects do not lead to qualitative changes
in the dynamics of the superconducting condensate.

II. TRANSPORT PROPERTIES AND KINEMATIC
VORTEX-ANTIVORTEX PAIRS

The calculated current-voltage characteristics of the
sample with L=600 nm and W=400 nm at 7=0.967, is
shown in Fig. 2(a) for two sizes of the current leads (a). The
case a=W (dashed curve) leads to an approximate uniform
current distribution and the stripe is fully superconducting up
to its first threshold current I.;=51 uA.3% At this current the
superconducting current density j,=J(V*VW¥)-|W[>A ex-
ceeds locally the pair-breaking current jg; and the system is
driven into a nonequilibrium state.?’ This results in a jump
and a change of the slope of the I-V curve, i.e., an abrupt
switching of the sample into a state of higher electric
resistivity.®>!=23 This state is characterized by the PSL solu-
tion whose nature is independent of W; there the order pa-
rameter is strongly suppressed across a line that is situated at
x=L/2, and vanishes periodically in time along the PSL per-
pendicular to the direction of the applied current flow. The
second type of a dissipative phase-slip state [the vortex
“street” (VS) solution] is characterized by the motion of real
vortices (singularities with encircling 27 change of phase)
perpendicular to the direction of the current, which is not
obtained for this small width of the sample and chosen 7y
parameter.” With further increasing current, the system tran-
sits into a normal state (superconductivity is destroyed) at the
second (real) critical current of I,,~91 uA.

For smaller leads (i.e., more locally injected current) the
electronic instability of the condensate starts at smaller ap-
plied current [1,;=38 uA, leading to a step in the I-V curve,
see Fig. 2(a)]. The reason is the strongly nonuniform distri-
bution of the transport current across the sample. As the ap-
plied current increases the current density reaches the depair-
ing current density in the middle of the sample and the pair-
breaking process leads to a prompt decrease in the order
parameter in the very center of the stripe. As a consequence,
a different kind of dissipative solution is obtained, compared
to the case of uniform current (large a): V-Av pair nucleates
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FIG. 2. (Color online) (a) Current-voltage (I-V) characteristics
(obtained in increasing current regime) of a superconducting stripe
of width W=400 nm and length L=600 nm connected to normal
contacts with width @=100 nm (solid curve) and a=400 nm
(dashed curve). The temperature is T=0.96T,. The inset shows the
schematic view of the sample. (b) The differential resistance dV/dI
of the sample as a function of applied current for a=100 nm.

in the weak point of the sample. To demonstrate the creation,
motion, and disappearance (i.e., leaving of the sample) of the
V-Av pair, we plotted the order parameter along their line of
motion in Fig. 3(a) for different time intervals. To emphasize
once more, V-Av pair nucleates in the middle of the sample
(curve 2) and is separated in opposite directions (lines 3-5)
under influence of Lorentz force toward the lateral edges of
the sample [see also contour plots in Fig. 3(a)]. After the
expulsion, a new pair is created again in the middle of the
sample, continuing the ever kinematic process. This periodic
nucleation and motion leads to persisting oscillations of the
voltage measured along the sample. Quite naturally, with in-
creasing the applied current the speed of this process in-
creases but no more than one V-Av pair at a time was found
in the vortex channel for the considered parameters of the
sample.

The latter dynamic behavior persists up to a current of /
=69 wA, where a unique phenomenon is observed—with
increasing the applied current, the /-V curve increases its
slope but without a step in voltage. Consequently, the differ-
ential resistance dV/dI of the sample increases abruptly at
this point [see Fig. 2(b)]. The snapshots of the order-
parameter profile across the kinematic line [see Fig. 3(b)]
show that the system transits into a different V-Av state: vor-
tex and antivortex are now created on the opposite sides of
the stripe [curve 1 in Fig. 3(a)], then move toward each other
(curves 2-4) and annihilate in the middle of the sample
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FIG. 3. (Color online) Lower parts of (a) and (b) are cross sections of the Cooper-pair density in the middle of the sample (x=L/2) at
different times for the applied currents (a) /=40 uA and (b) I=72 wA. The contour plots are snapshots of the Cooper-pair density at time

intervals indicated in the main panels.

(curve 5). Note that after annihilation the new pair is not
created at the point of annihilation but again at the sample
edges, contrary to the predictions of Ref. 2. This is an im-
portant difference, proving the nonsolitonic nature of V-Av
singularities, i.e., their annihilation/creation process cannot
be described as a passage of two solitons through each other.

Going back to the I-V curve, we can now identify two
distinct regions, the “Resistive I” (RI) and “Resistive II”
(RII) state. In both cases we have the kinematic V-Av solu-
tion but with different dynamics of the V-Av pairs and with
different rate of dissipation. Beyond the RII state, the system
evolves into a resistive state where kinematics across the
phase-slip line is lost—instead, a normal path is formed
across the sample with no oscillation of the order parameter.
Such “partially normal” (RIII) state is followed by the nor-
mal state at the critical current /.,=~102 wA, where super-
conductivity is suppressed over the whole sample. Note that
1., is significantly larger than the one found for the a=W
case.

At this point, we must address yet another interesting
phenomenon—the behavior of differential resistance as a
function of current [Fig. 2(b)]. We observed a unique mani-
festation of the negative differential resistance (NDR), one of
the most fascinating effects in mesoscopic physics (see Ref.
24 and references therein). With increasing dc, the resistance
of the sample increases over both kinematic V-Av states but
then decreases over the partially normal state, finally to the
normal-state resistance. It is not only remarkable that the
NDR takes place but we also find that the resistance of the

RII and RIII states exceed the normal-state resistance. There
is an obvious link between these resistance levels and phase-
slippage, and we believe that this resistance anomaly results
from the presence of a normal-superconducting (N-S) inter-
faces along the sample and near the I-V leads. The quasipar-
ticles and Cooper pairs have different electrochemical poten-
tials within the nonequilibrium regions, which extend over
the distance A, (the charge imbalance) around the N-S inter-
face (i.e., the phase-slip line in our case). This results in
increased resistance for quasiparticles in regions near to N-S
interfaces (where their chemical potential linearly increases
toward Cooper-pair value), as observed in the resistive mea-
surements in thin Al films with regions of different transition
temperatures.”’

As noted before, the appearance of kinematic V-Av lines
in our sample is a consequence of the inhomogeneous distri-
bution of current across the sample, enhanced by the smaller
size of the current leads compared to the size of the sample.
Nevertheless, these findings do depend on the dimensions of
the sample and on the parameter y. Namely, V-Av solution
can be obtained even for the case of a=W but in significantly
larger samples (W>80&). Moreover, latter threshold size of
the sample for appearance of V-Av state increases further
with increasing y (Ref. 2) and goes beyond mesoscopic re-
gime for materials like Al, where y=1000. Thus, in truly
mesoscopic samples, here reported phenomena can only be
seen for nanopatterned current leads on the sample. Follow-
ing this conclusion, in what follows we analyze the distribu-
tion of locally injected current in the sample, in order to
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FIG. 4. (Color online) (a) Distribution of the time and length-
averaged superconducting current density j, (in units of j,
=cH,£/4m\?) and (b) supervelocity of the superconducting con-
densate IT(x=L/2) (in units of TIy=¢&H,,) across the width of the
sample at zero-applied field and for different values of the applied
current /. (c) The total current density j, distribution over the width
of the sample for two values of the applied current.

understand the origin of RI to RII transition. Figure 4(a)
shows the distribution of the time-averaged supercurrent
density |j,| over the width of the sample for different values
of the applied current. Because of the inhomogeneous profile
of the injected current for a < W, the supercurrent is maximal
in the middle of the sample (line connecting the leads) and
reaches the critical value at /=38 uA, causing the nucle-
ation of a V-Av pair. After this event j, decreases but its
distribution remains qualitatively unchanged (see curve 1).
With increasing applied current, j, increases (curve 2) and
reaches the critical value beyond which it starts decreasing
again (compare curves 3 and 4). Simultaneously, the profile
of j, changes as it decreases faster in the middle of the
sample than at the edges (curve 3) and starting from [
=69 wuA the density of superconducting currents are clearly
maximal at the edges of the sample (curves 5 and 6). This is
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exactly where the transition from the RI state to the RII state
takes place. Therefore, the distribution of supercurrents di-
rectly determines the nucleation point of the kinematic V-Av
pairs. We would like to mention that, although the supercur-
rent density decreases with increasing the applied current /
after the RI-RII transition [compare curves 5 and 6 in Fig.
4(a)] the total current j,=j,+j,orma alWays increases with in-
creasing I [see Fig. 4(c)].

Previous GL studies (see, e.g., Ref. 26) have shown that a
weak point for the entrance of vortices is a position in space
where the kinematic momentum (also called supervelocity)
of the condensate is maximum. The latter is defined as II
, with 6 the phase of the order parameter. Figure
4(b) shows the distribution of the supervelocity I1 across the
sample along the vortex street just before the appearance of
V-Av pairs. At smaller currents supervelocity exhibits a
maximum in the middle of the sample, where V-Av pairs are
created (curve 1-4). Close to the RI/RII state transition II
becomes more uniform and immediately after this transition
the maximum shifts to the edges of the sample (curve 6). As
we will show in Sec. III, the spatial maximum of the super-
velocity predetermines the V-Av nucleation point.

III. INFLUENCE OF APPLIED MAGNETIC FIELD
ON THE KINEMATIC VORTEX-
ANTIVORTEX DYNAMICS

In this section, we demonstrate the effect of the applied
magnetic field H on the dynamics of kinematic V-Av pairs in
the sample (same parameters used as in Fig. 2, i.e., a
=100 nm). Simulations are done in zero-field cooling re-
gime, i.e., we started from fully superconducting state (|y|>
=1) and applied a magnetic field H. The external current is
applied after the stationary solution is reached. We restrict
ourselves to a weak magnetic-field regime so that no Abri-
kosov vortices enter the sample in the absence of applied
current. In such conditions, the qualitative form of the I-V
characteristics does not change and RI and RII kinematic
states are still present. We find that applied perpendicular
magnetic field influences the creation (in RI region) and an-
nihilation point of V-Av pairs (in RII region): both of them
shift away from the center of the sample [see Figs. 5(a) and
5(b)], in the direction that favors longer presence of the vor-
tex in the sample (and vice versa for the antivortex). The
reason behind this shift lies in the Meissner currents, which
are induced to screen the applied magnetic field and which
are maximal near the lateral edges. As a result, the total
supercurrent becomes more nonuniform leading to the drift
of the nucleation/annihilation (N/A) point. The exact position
of V-Av creation and annihilation is determined by the maxi-
mum of the supervelocity, which is shown in Fig. 6(a) for the
applied field H=2 Oe. Note that II profiles in Fig. 6(a) are
normalized to 0— 1 scale for clarity [calculated II values
strongly depend on the applied current value, see Fig. 4(b)].
The effect of magnetic field is particularly pronounced for
applied currents near the RI/RII transition, where N/A points
evidently shift closer toward the edges of the sample [see
Fig. 5(b) and curve 2 in Fig. 6(a)]. Moreover, there exists a
region [shaded area in Fig. 5(b)] where only a kinematic
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FIG. 5. (Color online) (a) The cross sections of the Cooper-pair
density in the middle of the sample (x=L/2) at different times for
I1=40 pA and H=2 Oe. (b) Dependence of the creation (solid
curve) and annihilation (dashed curve) points of the V-Av pair on
the applied current for H=2 QOe. (c) Creation (solid curve) and
annihilation (dashed curve) points as a function of applied field for
I1=40 pA and I=80 wuA. (d) The distance that vortex travels across
the sample before the creation of the antivortex at the opposite edge
of the sample as a function of applied field H for /=80 uA.

vortex is nucleated at the top edge of the sample and travels
to the opposite edge (without the corresponding antivortex)
but still provides for persisting oscillations of the voltage
similar to the kinematic V-Av case. In this region the super-
velocity is maximum at the edge of the sample [curve 3 in
Fig. 6(a)]. The area of such single-species kinematic line
increases with increasing applied field (as latter further dis-
favors the appearance of an antivortex; e.g., AI=10 uA for
H=8 Oe).

Contrary to the results in absence of the applied field
(H=0), in the RII state V-Av pair does not nucleate simulta-
neously; instead, the vortex nucleates first at the edge of the
sample and moves under the action of Lorentz force (see Fig.
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FIG. 6. (Color online) Supervelocity IT of the superconducting
condensate across the sample (x=L/2) for (a) H=2 Oe (II is nor-
malized to 0— 1 scale) and different values of the applied current I
and for (b) /=40 A and different values of magnetic field.

7). Figure 5(d) shows the distance that vortex travels without
the antivortex in both RI and RII regimes. Somewhat later,
the antivortex appears at the opposite site of the sample and
moves toward the annihilation with the vortex. This effect is
explained by the difference of the value of II at different
edges of the sample [curve 4 in Fig. 6(a)]. Now the annihi-
lation point is defined by the minimum of II distribution
[curve 4 in Fig. 6(a)].

Figure 5(c) shows the extent to which one can shift the
creation/annihilation point with increasing H for two values
of applied current corresponding to the RI and RII state.
Note that both curves in the figure do not reach the edges of
the sample, i.e., the creation (annihilation) point cannot be
shifted to the very edge of the sample in the RI (RII) regime.
To explain this we plotted in Fig. 6(b) the supervelocity of
the condensate for /=40 wA and for different magnetic
fields. With increasing the applied field the maximum in the
IT distribution shifts toward the edge of the sample (curves
1-3) and at H=8 Oe this maximum suddenly jumps to the
edge of the sample (curve 4), i.e., for larger magnetic fields
no V-Av pair appears in the sample and only the kinematic
vortex is found. This indicates that the transition from two-
species to single-species kinematic lines as a function of
magnetic field is of first order. It is also worth noting that the
creation point in RI state is more easily pushed out from the
sample by magnetic field than it is the case with the annihi-
lation point in the RIT state [for chosen currents in Fig. 5(c),
the found expulsion fields for N/A points are 7/16 Oe, re-
spectively]. Consequently the distance that vortex passes
without the antivortex is larger in the RI regime [Fig. 5(d)].
This asymmetry in the shift of nucleation and annihilation
point follows from their position with respect to the distribu-
tion of supercurrents in the sample. Namely, the creation
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point lies in an area with maximal supercurrent, which is a
superposition of the supercurrents due to the applied current
and the Meissner current. The annihilation point is situated in
the region where the latter two supercurrents cancel each
other. Therefore, larger Meissner current, i.e., larger mag-
netic field is necessary to shift the annihilation point toward
the edge of the sample. Since the Meissner current has a
linear dependence on the applied field,”” the nucleation/
annihilation points for the kinematic vortices depend linearly
on the magnetic-field strength.

IV. TUNING OF THE VORTEX AND ANTIVORTEX
VELOCITY BY THE MAGNETIC FIELD

It is already known from the previous studies*> that kine-
matic vortices exhibit similarities with both Abrikosov and
Josephson vortices and can have large velocity. Indeed, ex-
periments on Sn samples’ showed that kinematic vortices
can move along the vortex “street” with velocity vy,
~10° m/s, which is much larger than the maximal mea-
sured speed of Abrikosov vortices v4,=10° m/s.?® At the
same time, vy, is still much smaller than the characteristic
velocity of Josephson vortices v,,=10" m/s. Still, the
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FIG. 8. (Color online) (a) The trajectory (solid curve and left
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between the sample edge and the annihilation point (in the middle
of the sample) for H=0 and /=80 wA. (b) The average velocity of
vortices and antivortices as a function of applied current at H=0
(solid) curve and H=2 Qe (dashed and dotted curves). (c) The
dependence of average speed of vortices on the applied magnetic
field for /=40 wA (solid curve) and /=80 A (dashed curve).

model of kinematic vortices in Ref. 4 suggests that these
vortices can move with arbitrarily high velocity depending
on the value of the driving force and on the distribution of
the current over the sample. In that picture, conventional
phase-slip lines can be interpreted as kinematic vortices with
infinite velocity.

However, the kinematic vortices do not move with con-
stant speed over the sample, as they accelerate near the an-
nihilation point and near the edges of the sample? [see Fig.
8(a) for the trajectory (solid curve) and the local velocity
(dashed curve) of a vortex]. Therefore, we plotted in Fig.
8(b) the average velocity of the kinematic vortex (and anti-
vortex) v as a function of applied current. As seen in this
figure, for small current the vortex velocity increases almost
linearly with the current /. For larger currents, close to RI/
RII transition, v increases much faster. This tendency contin-
ues to divergency, i.e., transition to a phase-slip line, at the
very RI/RII transition. Near this transition point the distribu-
tion of the supercurrents becomes virtually uniform across
the sample [see, e.g., Fig. 4, curve 3]. Surprisingly, the ve-
locity of V-Av pairs exhibits mirror-opposite behavior in the
RII state, i.e., decreases with further increasing the applied
current.
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FIG. 9. (Color online) (a) The time evolution of the voltage for
1=62.5 pA and (b) the frequency (solid curve and right axis) and
amplitude (dashed curve and left axis) of the instant voltage as a
function of applied current /. The applied magnetic field is H=0.

Dashed curves in Fig. 8(b) show the influence of a weak
positive magnetic field (H=2 Oe). As shown there, applied
positive field increases the speed of antivortices and de-
creases the speed of vortices. As we discussed above, there is

a Al gap where only vortices appear in the sample. Figure
8(c) shows the magnetic-field dependence of just the vortex
speed (antivortex not shown) for two values of applied cur-
rent. v(H) function has a jump which characterizes the dis-
appearance of antivortices in the sample, i.e., only a vortex
travels across the sample. The velocity exhibits a 1/H back-
ground dependence and for larger H it approaches the value
obtained before for conventional Abrikosov vortices.

Up to now we presented the time-averaged voltage at the
contacts. But because of the presence of moving vortices
(and antivortices) this voltage oscillates in time, which will
result in the emission of electromagnetic radiation. In Fig.
9(a) we show the V(r) curve for applied current [
=62.5 pA and no applied magnetic field. Although a trivial
conclusion is that maxima/minima of the voltage correspond
to the nucleation and annihilation of V-Av pairs, the situation
turns out to be very different. The lifetime of V-Av pairs is
actually much smaller than the period of shown voltage os-
cillations [compare time scales in Fig. 8(a) and in Fig. 9(a)].
The latter can be explained by Larkin and Ovchinnikov
theory,?® according to which the energetic distribution of the
quasiparticles in the normal core of the vortex changes at
high vortex velocities. Qualitatively, when the vortex passes
through a given location, the spectrum of quasiparticles must
switch rapidly from the superconducting branch to the nor-
mal branch. Due to the finite inelastic-scattering time 7, the
switching process does not take place instantaneously. As a
result the removal of the normal excitations from the vortex
core takes place and the core of the vortex shrinks. The dis-
tribution function of quasiparticles changes in such a way
that the number of quasiparticles in front of the vortex is less

PHYSICAL REVIEW B 79, 184506 (2009)

than the equilibrium value and larger behind the vortex.
Therefore, the system needs a finite time to recover super-
conductivity. However, for larger applied magnetic fields the
speed of a kinematic vortex decreases [see Fig. 8(c)] and the
minimum (maximum) of the voltage oscillations correspond
to the entry (exit) of the kinematic vortex.

With view on future experiments, in Fig. 9(b) we summa-
rize the measured amplitude (dashed curve and right axis)
and frequency (solid curve and left axis) of the voltage as a
function of applied current /. Note that with increasing the
applied current the frequency of the oscillations increases.
Therefore, for somewhat different geometrical parameters of
the sample, frequency of the measured voltage oscillations
can easily be tuned into the THz gap.”

V. CONCLUSIONS

In summary, using the time-dependent Ginzburg-Landau
formalism, we studied the transport properties of thin super-
conducting stripes with attached normal leads in the presence
of a perpendicular magnetic field. We found that depending
on the parameters of the sample the resistive state is repre-
sented either by a phase-slip line, which is the 2D analog of
the 1D phase-slip center, or by the vortex “street” solution,
which is characterized by a fast moving vortex singularity
across the sample. In the latter case, and for narrow leads for
injection of the current, we found that the kinematic vortices
actually nucleate as vortex-antivortex pairs in the middle of
the sample, where the supercurrent density j, is maximal,
and move perpendicular to the direction of the drive. When
the distribution of j, changes (at higher driving currents),
V-Av pairs nucleate at the edges of the sample and move
toward the center of the sample where they annihilate (prior
to their periodic reappearance). These two scenarios result in
different differential resistance of the sample. The position of
creation/annihilation points in both scenarios can be manipu-
lated by applied (weak) magnetic field to the point that only
kinematic vortices remain in the sample (thus a transition
from two-species to a single-species kinematic line is
induced).

The distribution of the current across the sample is most
influential on the velocity of the kinematic vortex-antivortex
pair—the more uniform the current distribution, the faster
the (anti)vortices move. In principle, (anti)vortex velocity
can be tuned by applied current to an arbitrary value, where
infinite velocity corresponds to a conventional phase-slip
line. The speed of the kinematic (anti)vortex is also influ-
enced by magnetic field, in a way that positive field slows
down the vortex but propels the antivortex. At the same time,
vortex velocity is inversely proportional to the applied field,
converging to the velocity of the Abrikosov vortex for large
applied fields. We envisage the applicability of such highly
tunable position and velocity of the kinematic vortex-
antivortex in devices requiring time-dependent source of bi-
polar magnetic field (with tunable distance between poles)
but also in futuristic THz devices, as we found that the volt-
age across the sample in the kinematic phase can easily
exhibit oscillations with THz frequency.
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Of course, the findings of the paper depend on the param-
eters of the sample. For example, the speed of the kinematic
vortices and consequently the frequency of the voltage oscil-
lations increases with decreasing the width of the sample.
For longer samples, the number of vortex streets (quasiphase
slip lines) increase™!* and the motion of kinematic vortices
in neighboring vortex streets are out of phase. At larger mag-
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netic fields such quasiphase slip lines coexist with slow mov-
ing vortices between such lines.!3
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